

SPECIFICATIONS

WF120BD01/02 4¾" die cast, Nomex cone mid/woofers, 4/8 ohm

The 4%" transducers WF120BD01 (4 ohm) and WF120BD02 (8 ohm) were designed as high performance bass and midrange units for very compact monitors and high-end hi-fi speakers.

FEATURES

- Balanced Drive motor structure for optimal drive force symmetry resulting in largely reduced even order harmonic distortion
- Copper cap on center pole to reduce voice coil inductance and to minimize variations in voice coil inductance as a function of voice coil position
- Black Nomex cone
- Rigid die cast alu chassis with extensive venting for lower air flow speed reducing audible distortion
- Vented voice coil former for reduced distortion and compression Vented center pole with dual flares for reduced noise level at large cone excursions
- Heavy-duty black fiber glass voice coil former to reduce mechanical losses resulting in better dynamic performance and low-level details
- Large motor with 11/4" voice coil diameter for better control and power handling
- Built-in alu field-stabilizing ring for reduced distortion at high levels
- Low-loss suspension (high Qm) for better reproduction of details and dynamics
- Black motor parts for better heat transfer to the surrounding air
- Conex spider for better durability under extreme conditions
- Gold plated terminals to ensure long-term trouble free connection

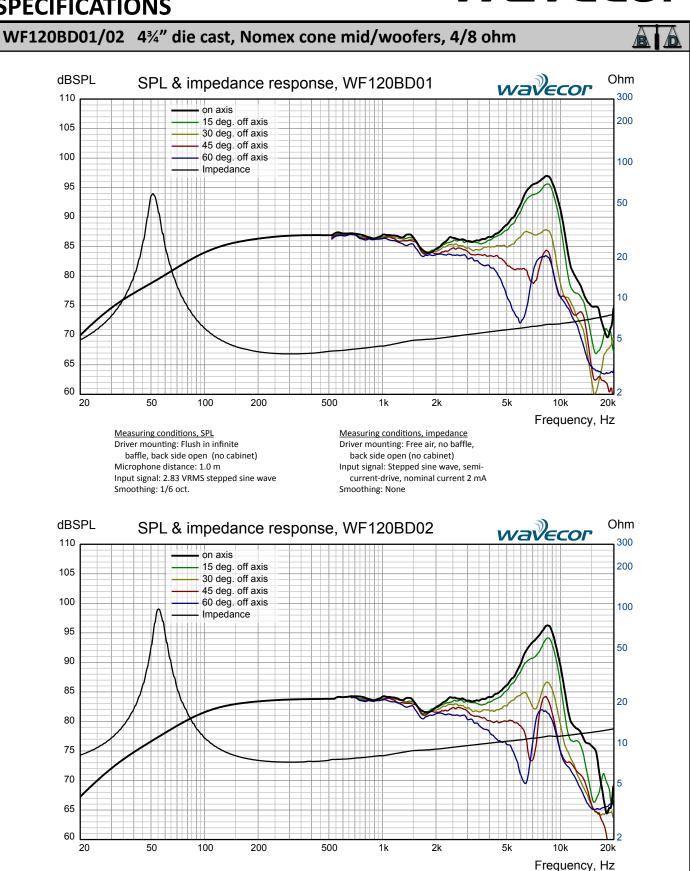
NOMINAL SPECIFICATIONS

Notes	Parameter	WF120BD01		WF120BD02		
		Before	After	Before	After	Unit
		burn-in	burn-in	burn-in	burn-in	
	Nominal size	4	3/4	4	3/4	[inch.]
	Nominal impedance		4		8	[ohm]
	Recommended max. upper frequency limit	3		3		[kHz]
1	Sensitivity, 2.83V/1m (average SPL in range 300 - 1,000 Hz)	87		84		[dB]
2	Power handling, short term, IEC 268-5, no additional filtering					[W]
2	Power handling, long term, IEC 268-5, no additional filtering					[W]
2	Power handling, continuous, IEC 268-5, no additional filtering	60		60		[W]
	Effective radiating area, Sd	54		54		[cm²]
3, 6	Resonance frequency (free air, no baffle), F _S	52		54		[Hz]
	Moving mass, incl. air (free air, no baffle), M _{ms}	7	.3	6	.7	[g]
3	Force factor, Bxl	4.1		5.2		[N/A]
3, 6	Suspension compliance, Cms	1.3		1.3		[mm/N]
3, 6	Equivalent air volume, Vas	5.3		5.3		[lit.]
3, 6	Mechanical resistance, R _{ms}	0.30		0.30		[Ns/m]
3, 6	Mechanical Q, Q _{ms}	7.9		7.6		[-]
3, 6	Electrical Q, Qes	0.45		0.54		[-]
3, 6	Total Q, Qts	0.43		0.50		[-]
4	Voice coil resistance, RDC	3	.2	6.4		[ohm]
5	Voice coil inductance, Le (measured at 10 kHz)	0.11		0.19		[mH]
	Voice coil inside diameter	3	2	3	2	[mm]
	Voice coil winding height	12		12		[mm]
	Air gap height	4		4		[mm]
	Theoretical linear motor stroke, X _{max}	±4		±4		[mm]
	Magnet weight	3	70	3	70	[g]
	Total unit net weight excl. packaging	1.0		1.0		[kg]
3, 5	K _{rm}					[mohm]
3, 5	E _{rm}					[-]
3, 5	K _{xm}					[mH]
3, 5	Exm					[-]

Note 1 Measured in infinite baffle.

Tested in free air (no cabinet).

Measured using a semi-constant current source, nominal level 2 mA.

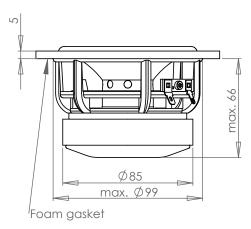

Note 5 It is generally a rough simplification to assume that loudspeaker transducer voice coils exhibit the characteristics of an inductor. Instead it is a far more accurate approach to use the more advanced model often referred to as the "Wright empirical model", also used in LEAP-4 as the TSL model (www.linearx.com), involving parameters K_{TM} , E_{TM} , E_{TM} , E_{XM} , and E_{XM} . This more accurate transducer model is described in a

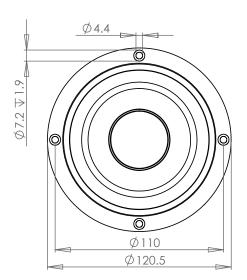
Note 6 After burn-in specifications are measured 12 hours after exiting the transducer by a 20 Hz sine wave for 2 hours at level 7.75/11 V_{RMS} (4/8 ohm version). The unit is not burned in before shipping.

Specifications are subject to change without any further notice. Copyright © 2009-2011 by Wavecor Ltd., Guangzhou, China. All rights reserved. For more information please visit **www.Wavecor.com** Wavecor® is a registered trademark of Wavecor Ltd.

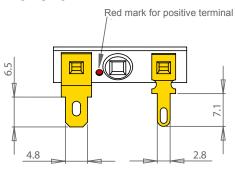
SPECIFICATIONS

Specifications are subject to change without any further notice. Copyright © 2009-2011 by Wavecor Ltd., Guangzhou, China. All rights reserved. Wavecor® is a registered trademark of Wavecor Ltd. For more information please visit www.Wavecor.com




SPECIFICATIONS

WF120BD01/02 4¾" die cast, Nomex cone mid/woofers, 4/8 ohm



OUTLINE DRAWING (nominal dimensions, mm)

CONNECTIONS

Thickness, both terminals: 0.5 mm Terminal plating: Gold

PACKAGING AND ORDERING INFORMATION

Part no. WF120BD01-01	4 ohm version, individual packaging (one piece per box)		
Part no. WF120BD01-02	4 ohm version, bulk packaging		
Part no. WF120BD02-01	8 ohm version, individual packaging (one piece per box)		
Part no. WF120BD02-02	8 ohm version, bulk packaging		

Latest update: July 3, 2011