KEY FEATURES

- Designed to be used with 1 inch compression drivers
- Coverage angles of $90^{\text {a }}$ in the horizontal plane and 40° in the vertical plane
- Precise directivity control in the pass band
- Square and compact design, providing versatile mounting options.
- Cast aluminium construction

GENERAL DESCRIPTION

This horn has been designed to work especifically with 1 inch compression drivers, providing uniform on and off-axis response. The constant directivity characteristics of this model ensure the ability to cover 90° width horizontally and 40° width vertically, at virtually any frequency within its operational range. To ensure freedom of resonance, this horn is constructed of cast aluminium, with flat front finish to facilitate flush mounting. Its square shape allows to easily rotate the horn without any need for modification in the cabinet.

TECHNICAL SPECIFICATIONS

Throat diameter

Horizontal beamwidth
Vertical beamwidth
Directivity factor (Q)
Directivity factor (DI)
Cutoff frequency
Dimensions (WxHxD)
Cutout dimensions (WxH)

Net weight Shipping weight Construction:
25.4 mm

1 in.
$90^{\circ}\left(-2^{\circ},-18^{\circ}\right)$ $(-6 \mathrm{~dB}, 2-16 \mathrm{kHz})$
$40^{\circ}\left(+34^{\circ},-3^{\circ}\right)$
$(-6 \mathrm{~dB}, 2-16 \mathrm{kHz})$
11.2 (average $800-16 \mathrm{kHz}$) $10,2 \mathrm{~dB}(+2 \mathrm{~dB},-6.4 \mathrm{~dB})$

1200 Hz
$202 \times 202 \times 145 \mathrm{~mm}$.
$7.95 \times 7.95 \times 5.7$ in
$177 \times 142 \mathrm{~mm}$. $6.97 \times 5.59 \mathrm{in}$.
$1 \mathrm{~kg} . \quad 2.2 \mathrm{lb}$.
1.3 kg .2 .86 lb.

Cast aluminium

FREQUENCY RESPONSE AND DISTORTION CURVES

-6 dB BEAMWIDTH*

DIRECTIVITY

POLAR RESPONSE**

800 Hz

H

V

$3,1 \mathrm{kHz}$

H

H

V
$1,2 \mathrm{kHz}$

H

V
5 kHz

V

2 kHz

V
8 kHz

H

V
10 kHz

H

V
12.5 kHz

H

V

Notes:

*Horizontal beamwidth is represented by the heavy line.
Vertical beamwidth is represented by the discontinuous line.
${ }^{* *}$ The polar plots are reproduction of measurements done with single sinusoidal signal tones, at the indicated frequencies.
The microphone was placed 2 m . from the horn, and rotation was around the centre of the emitter source.

