KEY FEATURES maltcross

- High power handling: $1.400 \mathrm{~W}_{\text {AES }}$
- Exclusive Malt Cross ${ }^{\circledR}$ Technology Cooling System
- Low power compression losses
- High sensitivity: 98 dB (1W / 1m)
- FEA optimized ferrite magnetic circuit
- Optimized non-linear parameters

TECHNICAL SPECIFICATIONS

Nominal diameter

460 mm | 18 in |
| ---: |
| 4Ω |
| $3,5 \Omega$ |
| $1.400 \mathrm{~W}_{\mathrm{AES}}$ |
| 2.800 W |
| $98 \mathrm{~dB} \quad 1 \mathrm{~W} / 1 \mathrm{~m} @ \mathrm{Z}_{\mathrm{N}}$ |
| $25-1.800 \mathrm{~Hz}$ |
| $\mathrm{~V}_{\mathrm{b}}=180 \mathrm{l}$ |
| $\mathrm{F}_{\mathrm{b}}=42 \mathrm{~Hz}$ |
| 4 in |
| $101,6 \mathrm{~mm} \quad 24 \mathrm{~N} / \mathrm{A}$ |
| $0,211 \mathrm{~kg}$ |
| 25 mm |
| 12 mm |
| 55 mm |

- Weatherproof cone with treatment for both sides of the cone
- 4" DUO double layer in/out copper voice coil
- Aluminium demodulating ring
- Extended controlled displacement: $X_{\max } \pm 10 \mathrm{~mm}$
- 55 mm peak-to-peak excursion before damage

THIELE-SMALL PARAMETERS ${ }^{3}$

Resonant frequency, f_{s}
D.C. Voice coil resistance, R_{e}

3,1 Ω
Mechanical Quality Factor, $\mathbf{Q}_{\mathrm{ms}} \quad 9,7$
Electrical Quality Factor, $\mathbf{Q}_{\text {es }} \quad 0,28$
Total Quality Factor, $\mathbf{Q}_{\text {ts }} \quad 0,27$
Equivalent Air Volume to $\mathbf{C}_{\mathrm{ms}}, \mathbf{V}_{\text {as }} \quad 188 \mathrm{I}$
Mechanical Compliance, C $_{\mathrm{ms}} \quad 84 \mu \mathrm{~m} / \mathrm{N}$
Mechanical Resistance, $\mathbf{R}_{\mathrm{ms}} \quad 5,1 \mathrm{~kg} / \mathrm{s}$
Efficiency, η_{0}
Effective Surface Area, $\mathbf{S}_{\mathbf{d}}$
Maximum Displacement, $X_{\text {max }}{ }^{4}$
Displacement Volume, V_{d}
Voice Coil Inductance, L_{e}

[^0]${ }^{3}$ T-S parameters are measured after an exercise period using a preconditioning power test. The measurements are carried out with a velocity-current laser transducer and will reflect the long term parameters (once the loudspeaker has been working for a short period of time).
${ }^{4}$ The $X_{\max }$ is calculated as $\left(\mathrm{L}_{\mathrm{vc}}-\mathrm{H}_{\mathrm{ag}}\right) / 2+\left(\mathrm{H}_{\mathrm{ag}} / 3,5\right)$, where L_{vc} is the voice coil length and H_{ag} is the air gap height.

beyma J/

PROFESSIONAL LOUDSPEAKERS www.beyma.com

Note: Frequency response measured with loudspeaker standing on infinite baffle in anechoic chamber, 1W @ 1m

MOUNTING INFORMATION

Overall diameter

Bolt circle diameter
Baffle cutout diameter:

- Front mount

Depth

Net weight
Shipping weight

461 mm	$18,1 \mathrm{in}$
438 mm	$17,2 \mathrm{in}$
415 mm	$16,4 \mathrm{in}$
$206,5 \mathrm{~mm}$	$8,1 \mathrm{in}$
$16,9 \mathrm{~kg}$	$37,3 \mathrm{lb}$
$18,2 \mathrm{~kg}$	$40,1 \mathrm{lb}$

[^0]: Notes:
 ${ }^{1}$ The power capaticty is determined according to AES2-1984 (r2003) standard.
 ${ }^{2}$ Program power is defined as power capacity +3 dB .

