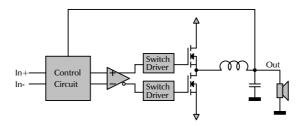


High Grade Audio Power Amplifier Module

Highlights

- Flat, fully load-independent frequency response
- Low output impedance
- Very low, frequency-independent THD
- Very low noise
- Fully passive loop control
- Consistent top performer in listening trials

Features


- Runs on unregulated +/- rails
- Pop-free start and stop control
- Differential audio input
- No compromise components
- LM4562 buffer OpAmp
- HxR12 ready
- Improved on-board buffer supply
- Overcurrent and overvoltage protection
- Weight: 160gms (5.5oz.)

Applications

- Monitor loudspeakers for recording and mastering studios
- Audiophile power amplifiers for professional and consumer use
- Public Address systems
- Home theatre systems
- Active loudspeakers

Description

The UcD400™ amplifier module is a self-contained high-performance class D amplifier intended for a wide range of audio applications, ranging from Public Address systems to ultrahigh-fidelity replay systems for studio and home use. Chief distinguishing features are flat frequency response irrespective of load impedance, nearly frequency-independent distortion behaviour and very low radiated and conducted EMI. Control is based on a phase-shift controlled self-oscillating loop taking feedback only at the speaker output.

Performance data

Power supply = \pm -65V, Load= \pm 4 Ω , MBW= \pm 40kHz, unless otherwise noted

Item	Symbol	Min	Тур	Max	Unit	Notes
Output Power	P_{R}	400	-	_	W	THD=1%
Distortion	THD+N	-	0.01	0.05	%	20Hz <f<20khz.< td=""></f<20khz.<>
						$Pout < P_R/2$
		-	-	0.004	%	20Hz <f<20khz< td=""></f<20khz<>
						Pout=1W
Output noise	U_N	-	30μ	35μ	V	Unwtd, 20Hz-20kHz
Output Impedance	Z _{out}	-	-	20m	Ω	f<1kHz
		-	-	150m	Ω	f<20kHz
Power Bandwidth	PBW		20-35k		Hz	
Frequency Response		10	-	50k	Hz	+0/-3dB. All loads.
Voltage Gain	$A_{\mathbf{v}}$	25.5	26	26.5	dB	
Supply Ripple	PSRR		65		dB	Either rail, all frequencies.
Rejection						
Efficiency	η		92		%	Full power
Idle Losses	P_0		8		W	
Standby Current	I _{STBY}		10m		A	
Current Limit			20		Α	Stop mode after limiting
						40ms

Absolute maximum ratings

Correct operation at these limits is not guaranteed. Operation beyond these limits may result in irreversible damage

Item	Symbol	Rating	Unit	Notes
Power supply voltage	$V_{\mathbf{B}}$	+/-75	V	Unit shuts down when either rail exceeds 68V
Peak output current	l _{OUT,P}	21	Α	Unit current-limits at 20A
Input voltage	V_{IN}	+/-12	V	Either input referred to ground
Air Temperature	T _{AMB}	65	оC	
Heat-sink	T _{SINK}	90	оC	User to select heat sink to insure this
temperature				condition under most adverse use case

Recommended Operating Conditions

Item	Symbol	Min	Тур	Max	Unit	Notes
Power supply voltage	$V_{\mathbf{B}}$	45 ¹⁾	57	65 ²⁾	V	
Load impedance	Z _{LOAD}	1			Ω	
Source impedance	Z_{SRC}			7k	Ω	Differential. Corresponds to 3dB noise increase.
Effective power supply storage capacitance	C _{SUP}	4700μ			F	Per rail, per attached amplifier. 4Ω load presumed.

¹⁾ Unit shuts down when either rail drops below 30V.

²⁾ Unit shuts down when either rail exceeds 68V.

Connections

J1: Input and ON/OFF control

Connector type: 4-pin MOLEX® KK® series.

Pin	Function
1	Noninverting Audio Input
2	GND
3	Inverting Audio Input
4	ON/OFF control 1)

¹⁾ During initial power up this pin is disabled for a period of 1.5s. Unlike previous UcD400 models there is no delay after enabling the amplifier.

Input Characteristics

Item	Symbol	Min	Тур	Max	Unit	Notes
Input Impedance	Z _{IN}		100k		Ω	Either input to ground
Common Mode	CMRR		75		dB	All frequencies
Rejection Ratio						
Control voltage on				3	V	
pin 4, amplifier ON						
Control voltage on		12			V	Internally pulled up to 15V
pin 4, amplifier OFF						

Note: It is recommended to use an open collector output to control the on/off pin.

J2: Loudspeaker output (hot)

Connector type: 1/4" FASTON® tab.

J3: Loudspeaker output (cold)

Connector type: 1/4" FASTON® tab.

Internally connected to GND. Note: This is the feedback reference. For best performance, do not use another ground connection for the loudspeaker.

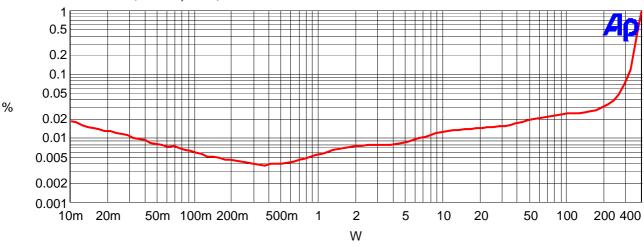
J4: Positive power supply connection, +VB

Connector type: 1/4" FASTON® tab.

J5: Power supply ground connection, GND

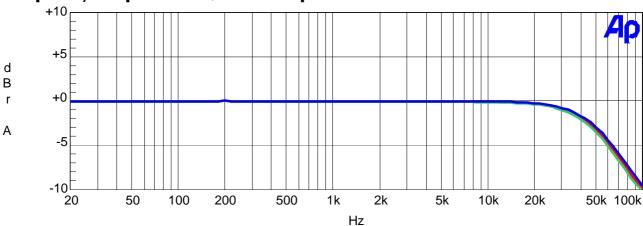
Connector type: 1/4" FASTON® tab.

J6: Negative power supply connection, -VB


Connector type: 1/4" FASTON® tab.

Typical Performance Graphs

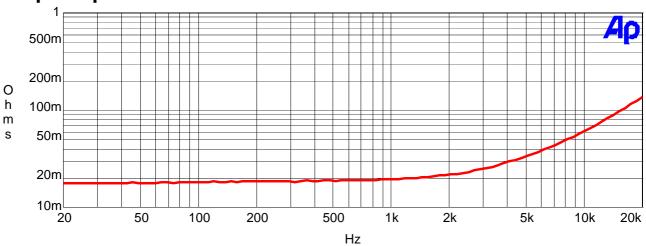
THD vs. Power (1kHz, 4Ω)



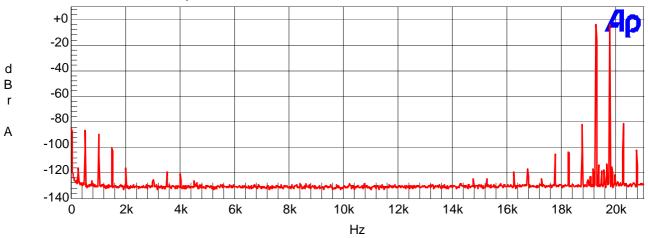
THD vs. Frequency (8Ω)

From top to bottom: 40W, 10W, 1W

Frequency Response (4Ω , 8Ω and open circuit)



From top to bottom: open circuit, 8Ω , 4Ω



Output Impedance

19+20kHz IMD (10W, 4 ohms)

