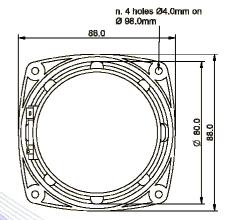
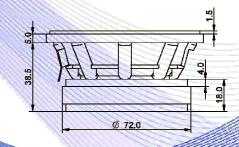
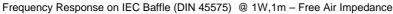
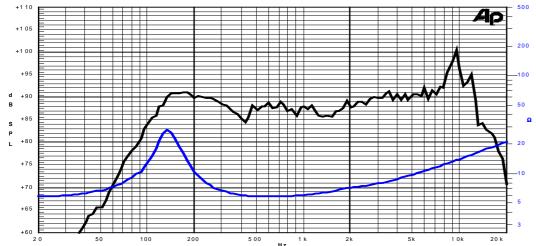
Code Z000960

Professional Woofer


- 1" voice coil Kapton former
- Ferrite magnet
- Ventilated voice coil to reduce power compression
- 88.2 dB sensitivity


Specifications		
Nominal Diameter	88mm (3,5")	
Nominal Impedance	8Ω	
Rated Power AES (1)	30W	
Continuous Program Power (2)	60W	
Sensitivity @ 1W/1m (3)	88.2dB	
Voice Coil Diameter	25mm (1")	
Voice Coil Winding Depth	6mm	
Magnetic Gap Depth	4mm	
Flux Density	1.04T	
Magnet Weight	160g	
Net Weight	0.4kg	


Market Market State of the Stat	C1212121212		
Thiele & Small Parameters (4)			
Re	5.30Ω	Fs	132.0Hz
Qms	3.31	Qes	0.83
Qts	0.66	Mms	3.1g
Cms	469µm/N	Bxl	4.04Tm
Vas	1.01	Sd	38.5 cm ²
X max ⁽⁵⁾	+/-1.5 mm	X var (6)	+/-3.1mm
η_0	0.26%	Le (1kHz)	0.21mH


Constructive Characteristics			
Magnet	: Ferrite		
Basket Material	: Nylon Fiberglass Doped		
Voice Coil Winding Material	: Copper		
Voice Coil Former Material	: Kapton		
Cone Material	: Paper		
Cone Treatment	: No		
Surround Material	: Rubber		
Dust Dome Material	: Treated Cloth		

Note:

- 1 : Rated Power measured with 2 hours test with pink noise signal, 6dB crest factor, loudspeaker mounted on enclosure
- 2: Power on Continuous Program is defined as 3 dB greater than the Rated
- 3: Calculated by Thiele & Small parameters
- 4: Thiele & Small parameters measured with laser system without preconditioning test
- 5: Measured with respect to a THD of 10% using a parameter-based method
- 6: Value corresponding to a decay of the Force Factor, or Compliance, or both, equal to the 50% of the small signal value.
- 7: Drawing dimensions: mm
- 8: The notch around 400Hz on the frequency response is typical of the measurement on IEC baffle

Due to continuing product improvement, the features and the design are subject to change without notice.

10/10/12