loudspeakers

Code Pro Ferrite

- 2.5" voice coil aluminium former
- Ventilated magnet to reduce power compression
- 97.3 dB sensitivity

Specifications		
Nominal Diameter	385mm (15")	
Nominal Impedance	4Ω	
Rated Power AES (1)	250W	
Continuous Program Power (2)	500W	
Sensitivity @ 1W/1m (3)	97.3dB	
Voice Coil Diameter	65mm (2.5")	
Voice Coil Winding Depth	12mm	
Magnetic Gap Depth	8mm	
Flux Density	1.15T	
Magnet Weight	1450g	
Net Weight	5.4kg	

The state of the s				
Thiele & Small Parameters (4)				
Re	3.55Ω	Fs	45.1Hz	
Qms	3.53	Qes	0.41	
Qts	0.37	Mms	72.3g	
Cms	172µm/N	Bxl	13.26Tm	
Vas	138.81	Sd	754.8cm ²	
X max ⁽⁵⁾	+/-3.5mm	X var (6)	+/-6.2mm	
η_0	3.01%	Le (1kHz)	0.62mH	

Constructive Characteristics			
Magnet	: Ferrite		
Basket Material	: Pressed Sheet Steel		
Voice Coil Winding Material	: Copper		
Voice Coil Former Material	: Aluminium		
Cone Material	: Paper		
Cone Treatment	: No		
Surround Material	: Treated Cloth		
Dust Dome Material	: Solid Paper		

Due to continuing product improvement, the features and the design are subject to change without notice.

- 1 : Rated Power measured with 2 hours test with pink noise signal, 6dB crest factor, loudspeaker mounted on enclosure
- 2: Power on Continuous Program is defined as 3 dB greater than the Rated Power
- 3: Calculated by Thiele & Small parameters
- Thiele & Small parameters measured with laser system without preconditioning test
- 5: Measured with respect to a THD of 10% using a parameter-based method 6: Value corresponding to a decay of the Force Factor, or Compliance, or both, equal to the 50% of the small signal value.
- 7: Drawing dimensions: mm
- 8: The notch around 400Hz on the frequency response is typical of the measurement on IEC baffle

31/01/13