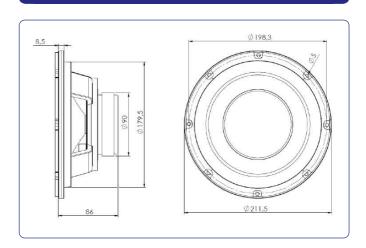


8BR40/N 8Ω LOW FREQUENCY TRANSDUCER

KEY FEATURES

- 50 W_{RMS} power handling
- Sensitivity: 91 dB (1W / 1m)
- 1" copper voice coil
- Extended controlled displacement: X_{max} ± 6,7 mm
- Low resonance for low frequency extension
- Flat response and low harmonic distortion
- Rubber surround
- Die cast aluminium basket
- Ferrite magnet


TECHNICAL SPECIFICATIONS

Nominal diameter	200 mm 8	in
Rated impedance	8	Ω
Minimum impedance	6,4	Ω
Power capacity*	50 W _{RN}	/IS
Program power	100	W
Sensitivity	91 dB 1W / 1m @ 2	Z _N
Frequency range	30 - 6.000 H	łz
Recom. enclosure vol.	20 / 60 I 0,7 / 2,12	ft ³
Voice coil diameter	25,4 mm 1	in
BI factor	6,8 N	/A
Moving mass	0,021 k	κg
Voice coil length	16 m	m
Air gap height	6 m	m
X _{damage} (peak to peak)	20 m	m

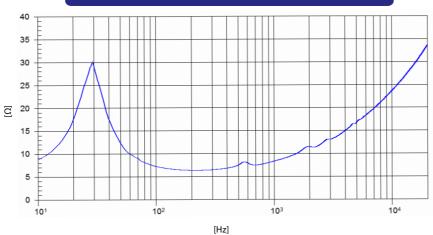
THIELE-SMALL PARAMETERS**

Resonant frequency, f _s	30 Hz
D.C. Voice coil resistance, R _e	5,5 Ω
Mechanical Quality Factor, Q _{ms}	2,05
Electrical Quality Factor, Q _{es}	0,48
Total Quality Factor, Q _{ts}	0,39
Equivalent Air Volume to C _{ms} , V _{as}	89,1 I
Mechanical Compliance, C _{ms}	1.301 μm / N
Mechanical Resistance, R _{ms}	1,99 kg / s
Efficiency, η ₀	0,5 %
Effective Surface Area, S _d	$0,022 \text{ m}^2$
Maximum Displacement, X _{max} ***	6,7 mm
Displacement Volume, V _d	147 cm ³
Voice Coil Inductance, L _e @ 1 kHz	0,5 mH

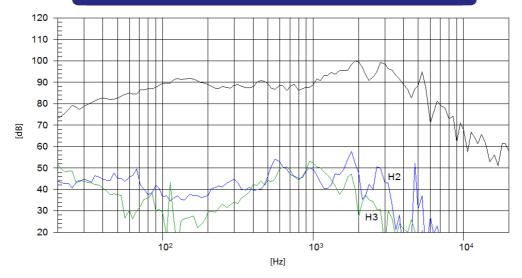
DIMENSION DRAWINGS

MOUNTING INFORMATION

Overall diameter Bolt circle diameter	211,5 mm 198,3 mm	8,00 in 7,80 in
Baffle cutout diameter:		
- Front mount	179,5 mm	7,06 in
Depth	77,5 mm	3,05 in
Net weight	1,35 kg	2,98 lb
Shipping weight	1,55 kg	3,41 lb


Notes:

- * The power capacity is determined according to AES2-1984 (r2003) standard. Program power is defined as the transducer's ability to handle normal music program material.
- ** T-S parameters are measured after an exercise period using a preconditioning power test. The measurements are carried out with a velocity-current laser transducer and will reflect the long term parameters (once the loudspeaker has been working for a short period of time).
- *** The X_{max} is calculated as $(L_{VC}$ $H_{ag})/2$ + $(H_{ag}/3,5)$, where L_{VC} is the voice coil length and H_{ag} is the air gap height.



8BR40/N 8Ω LOW FREQUENCY TRANSDUCER

FREE AIR IMPEDANCE CURVE

FREQUENCY RESPONSE AND DISTORTION

Note: On axis frequency response measured with loudspeaker standing on infinite baffle in anechoic chamber, 1W @ 1m

beyma //

Polígono Industrial Moncada II • C/. Pont Sec, 1c • 46113 MONCADA - Valencia (Spain) • Tel.: (34) 96 130 13 75 • Fax: (34) 96 130 15 07 • http://www.beyma.com • E-mail: beyma@beyma.com •