

10WR300

LOW FREQUENCY TRANSDUCER
Preliminary Data Sheet

KEY FEATURES

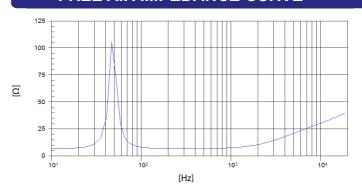
- High power handling: 600 W program power
- 2" copper wire voice coil
- High sensitivity: 95 dB (1W / 1m)
- · FEA optimized magnetic circuit
- Designed with MMSS technology for high control, linearity and low harmonic distortion
- Waterproof cone treatment on both sides of the cone
- Extended controlled displacement: X_{max} ± 6 mm
- X_{damage} ± 30 mm
- Weight 3,5 kg
- Low harmonic distortion and linear response
- Wide range of applications of low and mid-low frequencies

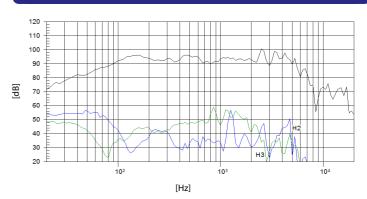
TECHNICAL SPECIFICATIONS

Nominal diameter	250 mm 10 in
Rated impedance	8 Ω
Minimum impedance	6,5 Ω
Power capacity*	300 W _{AES}
Program power	600 W
Sensitivity	95 dB @ 1W @ 1m @ Z _N
Frequency range	50 - 5.000 Hz
Voice coil diameter	50,8 mm 2 in
BI factor	14,9 N/A
Moving mass	0,040 kg
Voice coil length	15 mm
Air gap height	8 mm
X _{damage} (peak to peak)	30 mm

THIELE-SMALL PARAMETERS**

Resonant frequency, f _s	48 Hz
D.C. Voice coil resistance, R _e	6,2 Ω
Mechanical Quality Factor, Q _{ms}	6
Electrical Quality Factor, Q _{es}	0,34
Total Quality Factor, Q _{ts}	0,32
Equivalent Air Volume to C _{ms} , V _{as}	46,8 I
Mechanical Compliance, C _{ms}	270 μm / N
Mechanical Resistance, R _{ms}	2,05 kg / s
Efficiency, η ₀	1,5 %
Effective Surface Area, S _d	0,035 m ²
Maximum Displacement, X _{max} ***	6 mm
Displacement Volume, V _d	210 cm ³
Voice Coil Inductance, Le @ 1 kHz	1 mH


Notes


MOUNTING INFORMATION

Overall diameter	261 mm	10,28 in
Bolt circle diameter	243,5 mm	9,59 in
Baffle cutout diameter:		
- Front mount	230 mm	9,06 in
Depth	115 mm	4,52 in
Net weight	3,5 kg	7,71 lb
Shipping weight	3,9 kg	8,60 lb

FREE AIR IMPEDANCE CURVE

FREQUENCY RESPONSE & DISTORTION

Note: On axis frequency response measured with loudspeaker standing on infinite baffle in anechoic chamber, 1W @ 1m

^{*} The power capaticty is determined according to AES2-1984 (r2003) standard. Program power is defined as the transducer's ability to handle normal music program material.

^{**} T-S parameters are measured after an exercise period using a preconditioning power test. The measurements are carried out with a velocity-current laser transducer and will reflect the long term parameters (once the loudspeaker has been working for a short period of time).

^{***} The X_{max} is calculated as $(L_{vc} - H_{ag})/2 + (H_{ag}/3.5)$, where L_{vc} is the voice coil length and H_{ag} is the air gap being the state of the state of