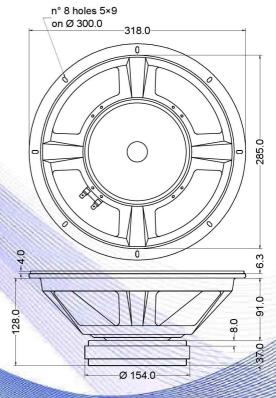
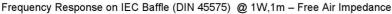
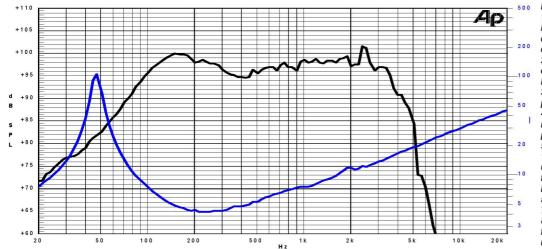
## Code Z007960


- 2.5" voice coil Kapton former
- Ferrite magnet circuit
- 97.9 dB sensitivity.


| Specifications               |              |  |  |  |
|------------------------------|--------------|--|--|--|
| Nominal Diameter             | 318mm (12")  |  |  |  |
| Nominal Impedance            | 4Ω           |  |  |  |
| Rated Power AES (1)          | 250W         |  |  |  |
| Continuous Program Power (2) | 500W         |  |  |  |
| Sensitivity @ 1W/1m (3)      | 97.9dB       |  |  |  |
| Voice Coil Diameter          | 65 mm (2.5") |  |  |  |
| Voice Coil Winding Depth     | 13 mm        |  |  |  |
| Magnetic Gap Depth           | 8mm          |  |  |  |
| Flux Density                 | 1.16T        |  |  |  |
| Magnet Weight                | 1450g        |  |  |  |
| Net Weight                   | 4.8kg        |  |  |  |
|                              |              |  |  |  |


| - |                      |             |                               |                    | 100 March 100 Ma |  |  |  |
|---|----------------------|-------------|-------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|   |                      | Thiele & Sm | Thiele & Small Parameters (4) |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| - | Re                   | 3.12Ω       | Fs                            |                    | 44.8Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
|   | Qms                  | 10.12       | Qe                            | s                  | 0.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
|   | Qts                  | 0.26        | Mn                            | าร                 | 48.7g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|   | Cms                  | 260 µm/N    | Bx                            |                    | 12.75Tm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
|   | Vas                  | 88.51       | Sd                            |                    | 490.9cm <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
|   | X max <sup>(5)</sup> | +/-2.8mm    | Χv                            | ′ar <sup>(6)</sup> | +/-5.0mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
|   | $\eta_0$             | 2.92%       | Le                            | (1kHz)             | 0.68mH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |

| Constructive Characteristics |                       |  |  |  |  |
|------------------------------|-----------------------|--|--|--|--|
| Magnet                       | : Ferrite             |  |  |  |  |
| Basket Material              | : Pressed Sheet Steel |  |  |  |  |
| Voice Coil Winding Material  | : Copper              |  |  |  |  |
| Voice Coil Former Material   | : Kapton              |  |  |  |  |
| Cone Material                | : Paper               |  |  |  |  |
| Cone Treatment               | : No                  |  |  |  |  |
| Surround Material            | : Treated Cloth       |  |  |  |  |
| Dust Dome Material           | : Solid Paper         |  |  |  |  |









- 1 : Rated Power measured with 2 hours test with pink noise signal, 6dB crest factor, loudspeaker mounted on
- 2: Power on Continuous Program is defined as 3 dB greater than the Rated
- 3: Calculated by Thiele & Small parameters
- Thiele & Small parameters measured with laser system without preconditioning test
- 5: Measured with respect to a THD of 10% using a parameter-based method
- 6: Value corresponding to a decay of the Force Factor, or Compliance, or both, equal to the 50% of the small signal value.
- 7: Drawing dimensions: mm
- 8: The notch around 400Hz on the frequency response is typical of the measurement on IEC baffle

Due to continuing product improvement, the features and the design are subject to change without notice.